

Valamar Lacroma Dubrovnik Hotel | Dubrovnik, Croatia | October 7–12, 2018 https://oceanopticsconference.org

Wednesday, October 10 Poster Session 3 16:00–18:00

Poster 131

MEASUREMENTS OF PARTICLE SIZE DISTRIBUTIONS IN NORWEGIAN COASTAL WATERS: A COMPARISON OF LISST-200X TO TRADITIONAL MICROSCOPY COUNTING WITH A NOVELTY

The particle size distribution (PSD) represents the relationship between the size of particles and their concentrations. Marine PSDs are relevant to a large number of varied fields, from biology and oceanography to climate studies and geology. The propagation of light in natural waters depends directly on the cross-sectional scattering area of the particles, and therefore the PSD provides important information about the optical properties of the oceans. The relevant size range for bio-optical studies is generally 0.01 micrometer to 1 mm, including virus, bacteria, sediments and phytoplankton [Jonasz and Fournier 2011]. The LISST-200X is a submersible laser-diffraction based particle size analyzer which is an improved version of the LISST-100X, able to make measurements at twice the depth, down to 600 meters. This makes the instrument especially suitable for measurements in the deep Norwegian fjords. The size range is 1-500 micrometer with 36 size classes. We have also taken water samples to filter and subsequently count and size particles the 'old fashioned' way using a microscope. However, since this is a very time-consuming and tedious method, we have developed a novel technique to ease this task: A software tool to measure length and width of particles from microscope images converts the non-spherical particles to 'equivalent' spheres [Grenfell and Warren 1999], which in turn are used to produce the PSD. Further we have compared the LISST-200X and the equivalent-spheres approach for several locations and depths from Norwegian coastal waters and fjords, to determine suitability and possible complementations for the two methods.

Arne Kristoffersen, Department of physics and technology, University of Bergen, akr030@uib.no Håkon Sandven, IFT, UoB, hakon.sandven@uib.no Yi-Chun Chen, IFT, UoB, yi-chun.chen@uib.no Børge Hamre, IFT, UoB, borge.hamre@uib.no