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Microalgae are capable of acclimating to dynamic light environments as they have evolved
mechanisms to optimize their light harvesting ability and minimize the damage to the photosynthetic
machinery. Xanthophyll cycle (XC) is one of the most important protective mechanisms that
prevents photodamage to photosystems (PSII). Photoprotective carotenoids (PPC) involved in the
XC accumulate when cells acclimate to high light, altering their absorption properties.

eva.alvarez@awi.de

The BGC model REcoM2 resolves two groups of phytoplankton that are responsible for capturing light energy into carbon fixation (a).
The Photosynthesis-Light (PE) curve relates this two variables and its initial slope, α, indicates the total light affinity of the light harvesting apparatus (b).
Under high light part of the photosystems (PSII) can be inactivated leading to a decrease in α and thus to photoinhibition (c). We combined in REcoM2, two
phytoplankton growth models that consider constant or variable α, respectively:

All PSII are active, α is diverse due to
changes in phytoplankton communities
adapted to different light regimes, but
remains constant at short-term.

Geider et al. (1998) [1]

Marshall et al. (2000) [2]

The model

Damage

Active 
PSII

Repair
Inactive 

PSII

Part of the PSII are inactive, α is
variable at short term and depends on
the proportion of active PSII. Non-
photochemical quenching (NPQ)
protect PSII from damage considering
a constant pool of photoprotective
pigments (PPC).
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If photoinhibition is small in communities adapted to ambient light [3], the
difference between both estimates of α constitutes a proxy for photoprotection (d). 

Phytoplankton protect themselves by accumulating pigments involved in the XC [4].
Hence, the photoprotection index reflects the PPC accumulated under natural conditions.

PPC/TChla = Allo + Lut + Viola + Zea + α/βCaro + DD + DT / Chla PPC/TChla = 1 – (αGeider/αMarshall)

Observations We compared our 
photoprotection index to in situ observations of PPC 
normalized by total Chla, both determined by HPLC [5]. 

Modelled photoprotective carotenoids (PPC) content was in agreement with in situ
observations. PPC deviate light through the non-photochemical path and their presence is
crucial for the coupling of light absorption to carbon fixation in the ocean. They also shape
the absorption spectrum and can be highly relevant under variable spectral regimes.
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Predicted PPC values (0-15m) (h) were highly correlated to observations (f).
The gradient in depth (g) was steeper than observations (e). The latitudinal
trend was captured by the model in all ocean basins (i) with maximum PPC
content in tropical ocean and minimum in temperate and polar regions.

Seasonality of PPC and the contribution of phytoplankton groups varied
with latitude (j). In tropical ocean PPC content remained constant along the
year with a high contribution of highly protected phytoplankton. At higher
latitudes seasonality was noticeable with larger presence of diatoms (k).
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