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1 Introduction 
 
Studies have shown that the presence of CDOM and of SM in the Arctic waters results in 
an increased absorption of solar energy in the mixed layer (Pegau 2002, Hill 2008, Kutser 
2010, Granskog et al. 2015, Kim et al. 2016); potentially contributing to sea ice melting. 
Here, we focus on the Laptev Sea shelf (Arctic Siberia), the region of the Arctic Ocean 
where the Lena River discharges - one of the largest river systems in the Arctic region 
and with the highest annual flux of dissolved organic carbon and silica to the Arctic 
Ocean (Stedmon et al. 2011, Holmes et al. 2012). In the Laptev Sea, the sea ice melting 
and break up of fast sea ice is coupled with the Lena River discharge (Bauch et al. 2013, 
Selyuzhenok et al. 2015). We hypothesize that the high concentrations of CDOM and SM 
of the Laptev Sea shelf waters highly absorb solar energy in the first few meters of the 
water column, trapping heat at surface and influencing sea ice melting and formation in 
the Lena delta.   
 
To test the hypothesis, we combined efforts of satellite remote sensing, radiative transfer 
modeling and in situ sampling. In detail, we simulated the radiative heating in the water 
column and surface waters by using a coupled atmosphere-ocean radiative transfer model 
(RTM) and in situ measurements of aCDOM (m-1), suspended particulate matter (here after 
called total suspended matter - TSM, g/m3) and chlorophyll concentration (Chla, mg/m3) 
from the TRANSDRIFT XVII expedition carried out in September 2010. Moreover, we 
showed the potential of using satellite information together with RTM to investigate 
spatial variability of the radiative heating.  
 
2 Methods 
 
2.1 In Situ Data 
 
The in situ dataset is composed of measurements of CDOM absorption spectra, SPM, 
Chla, temperature and salinity taken during August-September 2010 by the 
TRANSDRIFT-XVII (2010) expedition (Figure 1). Chla, temperature and salinity were 



measured every 1 m, whereas the vertical resolution of aCDOM and TSM varied among the 
stations. A detailed description of water sampling and analysis for the TRANSDRIFT 
XVII expedition can be found in Heim et al. (2014).  
 
2.2 Radiative Transfer Model 
 
The coupled atmosphere–ocean radiative transfer model (RTM) SCIATRAN release 
version 3.7.1 (Rozanov et al, 2002, 2014, 2017) was used for radiative heating 
simulations. SCIATRAN is freely available at http://www.iup.physik.uni-
bremen.de/sciatran along with a detailed User’s Guide. The model spectral range covers 
from 0.18 to 2.4 µm and simulations were carried out from 0.3 to 0.9 µm in pseudo-
spherical mode.  
 
The atmospheric model of SCIATRAN includes thermal emission, absorption by several 
trace gases, Rayleigh scattering and scattering by aerosol and cloud particles. The ocean 
surface reflection properties are described by the bidirectional reflection function taking 
into account Fresnel effects and a wind roughened ocean-atmosphere using wind speed 
values derived from MERIS L1b data and extracted using Sentinel Application Platform 
(SNAP) software version 6.0. The solar spectrum is derived from MODerate spectral 
resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN) 
3.7 interpolated (1 nm) and convolved with a Gaussian full width at half maximum 
function. For the trace gases we used the spectral parameters and the climatologies 
provided by HITRAN 2012 database. The aerosol properties were selected as in Rozanov 
et al. (2017) and the aerosol optical thickness was set to 0.09 at 0.5 µm. Rotational 
Raman scattering and polarization effects were not included in the simulations. 
 
The ocean model consists of biooptical models as described in Blum et al. (2012). 
Chlorophyll-a specific phytoplankton absorption coefficient is based on Prieur and 
Sathyendranath (1981) and Haltrin (2006), and mass-specific absorption spectrum of 
non-algal particles based on Örek et al. (2013). The pure water absorption (aw) spectrum 
is a merged spectrum based on Smith (1981) for 200-300 nm with transition to 
Sogandares and Fry (1997) between 300-340 nm, Sogandares and Fry (1997) for 340-380 
nm, Pope and Fry (1997) for 380-725 nm, Smith (1981) for 725-800 nm and Segelstein 
(1981) for 800-1150 nm. We further implemented a temperature and salinity correction 
following Röttgers et al. (2014). Particle scattering is based on Kopelevich (1983) with 
the concentrations of small and large particles determined following Haltrin (1999). No 
effects of vibrational Raman scattering and fluorescence by CDOM or Chla were 
included in the simulations. 
 
2.3 Radiative heating simulations 
 
As input parameters in the simulations, we used in situ profiles of aCDOM spectrum, Chla, 
TSM, temperature, salinity and wind speed. To demonstrate the heating effect of large 
concentrations of the water constituents CDOM and TSM, simulations were performed 
for four stations of the TRANSDRIFT-XVII expedition. These stations presented the 
highest and lowest values of aCDOM(443) among all sampled stations with changing TSM 



and Chla concentrations (Table 1).  
 
To assess only the effect of the water constituents on the radiative heating, we simulated 
the spectrally integrated actinic flux (i.e. scalar irradiance, E0, W/m2) for July 1 at 76°N, 
126°E and for 24 solar zenith angles (representing hourly resolution). For the stations’ 
simulations, also the MERIS imaging geometry information (solar zenith angle, satellite 
viewing angle and azimuth angle) for this specific location and day was considered. 
 
From the actinic flux summed over the course of a day (KJ/m2) we estimated the 
absorbed energy (E0abs) at every vertical layer based on the provided depth grid (dz) as: 
 
𝐸!𝑎𝑏𝑠 𝑑𝑧! =  𝐸! 𝑧! + 1 − 𝐸! 𝑧!                (1)  
 
with i ranging from zero to the maximum depth (z). Simulations were performed for 
different scenarios, including and excluding absorbers (Table 2). The difference in the 
absorbed energy (∆E0abs) was determined for example, by calculating the difference 
between E0abs at S01 (highest aCDOM) and at S40 (lowest aCDOM). The ∆E0abs for the 
upper 2 m can be translated in terms of radiant heat (RH, °C) as: 
 
∆𝑅𝐻 =  ∆𝐸!𝑎𝑏𝑠 𝜌𝑉𝑐!                           (2) 
 
where ρ is the density of seawater (kg/m3) measured in situ, V is the volume of water (i.e. 
2 m3) and cp is the seawater specific heat (4100 J/kg °C). Following the method described 
by Pegau (2002), we estimated the potential increase in the rate of sea ice melt (dH/dT, 
mm/h) caused by the presence of CDOM and TSM (considering that all E0abs is 
converted to ice melt): 
 
∆𝑑𝐻 𝑑𝑇 =  ∆𝐸!𝑎𝑏𝑠 𝜌𝐿                (3) 
 
where ΔE0abs (KJ/m2) is the difference in absorbed energy due to aCDOM and TSM 
estimated from our simulations (as in equation 1 but given per hour), ρ is the density of 
sea ice (900 kg/m3 ) and L is the latent heat of fusion of sea ice (300 KJ/kg). 
 
2.4 Spatial distribution 
 
The spatial analysis of radiative heating was simulated with satellite information of Chla, 
aCDOM(443), TSM and sea surface temperature (SST) for August 4, 2010; the least cloudy 
satellite image. More specifically, we used the C2RCC Laptev Sea Chla and C2RCC 
aCDOM(443) MERIS products after the evaluation of the satellite retrievals against in situ 
measurements. CDOM absorption spectra were derived from aCDOM(443) product using a 
spectral slope value of 0.018 (Matsuoka et al. 2014). TSM product was derived from the 
C2RCC algorithm. Temperature was estimated from SST using the Group for High 
Resolution Sea Surface Temperature (GHRSST) Multi-scale Ultra-high Resolution 
(MUR) SST data [34] that combines information from microwave and infrared sensors 
and represents the temperature at 1 m depth. Salinity (S) was estimated empirically from 
satellite aCDOM(443) using a linear relationship derived from in situ measurements 



TRANSDRIFT XXVII 𝑆 = 9.95 ∗ 𝑎!"#$ 440 + 32.49  and assuming aCDOM(440) ≈ 
aCDOM(443). Constant light conditions were selected during simulations representing 
August 4, 2010, using an average solar zenith angle for the day at 74°N and 140°E. 
Considering that the shelf areas of the Laptev Sea are very shallow (Figure 1 and Table 1) 
and the average first optical depth was 2.6 m for the selected scene, the vertical 
distribution of Chla, aCDOM(443), TSM, salinity and temperature were set homogeneous 
with a constant bottom depth of 10 m. 
 
3 Results and Discussion 
 
3.1 Absorbed Energy and Radiant Heat 
 
Profiles of E0abs showed that in high CDOM and TSM regimes, the incident solar 
radiation was strongly absorbed in the first meter of the water column and almost fully 
attenuated in the upper five meters (Figure 2a). A closer look at S03 (Figure 2b), also a 
high aCDOM station but with lower concentrations of TSM than S01, showed a turning 
point at 1.8 m; after this depth less energy was available and was absorbed in waters with 
the presence of CDOM. Similarly this was observed at S16 for simulations without 
CDOM or TSM, but at shallower depths (Figure 2c). As expected, in the marine-
influenced waters of S40, where the concentration of CDOM, TSM and Chla were low, 
radiation penetrated deeper compared to the river-influenced stations and in turn, some of 
the heat could potentially be trapped below the pycnocline. 
 
When aCDOM was removed in the simulation at S03 (other absorbers were kept), there was 
20% of difference in the E0abs in the upper 2 m of the water column (Table 2). The 
highest aCDOM(443) station (S01) led to 15.8% more E0abs in the surface layer relative to 
the station with lowest aCDOM(443) (S40). TSM presence also played a notable role on 
how much energy was absorbed at surface. But, even considering the highest TSM value 
measured in the field at S16, the concentration was not high enough to overcome the 
optical influence of CDOM on the E0abs (Figure 8 c). By excluding TSM absorption and 
scattering effects, ΔE0abs decreased by 4.6%, whereas the exclusion of aCDOM led to a 
decrease of 5.9%.  
 
The greater E0abs by CDOM and TSM increased the RH. There was a temperature 
increase of 2.12°C/day in the top 2 m when aCDOM was included in the simulations at S03 
and a 0.55°C/day increase when TSM was included in the simulations at S16 (Table 2). A 
comparison between S01 and S40 showed an increased RH of 1.47°C/day. In addition, to 
directly compare our results with the study of Hill (2008) carried out in the Chukchi Sea, 
we also estimated the radiative heating at S16 for two hours exposure for summer (July 1, 
2010) at solar noon. The combined effect of all absorbers at S16 led to 66% of increase in 
the surface heating and a 0.5°C increase in surface temperature. As expected, the 
temperature increase here observed was comparable but greater than the values reported 
by Hill (2008) (0.14°C), as the concentrations of CDOM and TSM in the Laptev Sea 
during TRANSDRIFT XVII expedition were significantly higher than in the Chukchi 
Sea.  
 



 
The contribution of CDOM to sea ice melt was as high as 0.73 mm/h (S03, Table 2). In 
comparison, ΔdH/dT caused by energy absorption due to TSM was lower, 0.19mm/h at 
S16, whereas the combined effect of CDOM and TSM led to a ΔdH/dT of 1.2 mm/h. In 
waters under the influence of the Lena River plume, there was an increase of 0.5 mm/h in 
the ice melt rate relative to the marine-influenced waters. Given the bio-optical influence 
on the radiative heating in the Laptev Sea, a future with an amplified Arctic could have 
consequences to sea ice melt and thus, Arctic climate. 
 
3.2 Radiative heating distribution 
 
The spatial patterns of E0abs and ΔRH confirm that the water constituents have 
significant influence on the radiative heating in the Laptev Sea surface waters (Figure 3). 
The largest E0abs occurred over river influenced waters where also the ΔRH was 
enhanced. An analysis of the relationship between E0abs, aCDOM(443), TSM and Chla 
revealed a more complex nature of relationships between the radiative heating and non-
water absorbers that failed to be captured by point simulations (Figure 4). Although E0abs 
increased with increasing aCDOM (443), the relationship became less definite when the 
concentration of TSM and Chla were higher than 10 g/m3 and 3 mg/m3, respectively. As 
the concentration of TSM and Chla increase, also the size of these particles in the water 
increases causing higher scattering and light attenuation in the water. Evidence that 
should be supported by in situ observations in the future. 
 
4 Conclusion 
 
The effect of water constituents on the radiative heating of Laptev Sea shelf waters was 
investigated with the combined effort of satellite remote sensing, RT modeling and in situ 
sampling. The results show that the radiative heating of Laptev Sea surface waters is 
directly linked to the concentration of CDOM and TSM. The presence of the optically 
active constituents caused the ocean to absorb and deposit more energy in the upper 2 m 
of the water column. Likewise, waters where the amount of CDOM and TSM was higher 
presented an increased rate of sea ice melt compared to clearer waters. This implies that a 
detailed and realistic representation of optical properties of CDOM and TSM is necessary 
in Earth system models, especially on coastal waters and shelf regions. We also showed 
that the lack of in situ measurements can be compensated using satellite information 
together with RTM; this is especially important for remote and seasonally ice-covered 
regions as the Laptev Sea.  
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Figure 1. Study area and location of sampling stations of TRANSDRIFT-XVII 
expedition.  
 
Table 1. Information about the selected stations for RTM simulation.  

 
 



 
Figure 2. (a) Profiles of E0abs including all absorbers. (b) Profiles of E0abs at S03 
including all absorbers (blue) and without CDOM (red). (c) Profiles of E0abs at S16 
including all absorbers (blue), without CDOM (red) and without TSM (orange). 
 
Table 2. Absorbed energy difference (ΔE0abs, KJ/m2) and relative difference (%ΔE0abs, 
KJ/m2) at the top 2 m, absorbed energy difference in the subsurface layer (ΔE0abs 2-9 m, 
KJ/m2), radiant heating rate difference (ΔRH, °C/day), ice melting rate difference 
(ΔdH/dT, mm/h) for the selected scenarios. 

 
 
 

  
Figure 3. Spatial distribution of absorbed energy (left) and radiant heat difference (right) 
of the Laptev Sea surface waters. 
 
 



  
Figure 4. Scatterplot of E0abs, aCDOM(443) and TSM (left) and scatterplot of E0abs, 
aCDOM(443) and Chla (right). 


