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Abstract: This study focuses on PFT retrieval algorithms that are then applied to Sentinel-3A 

(S3) OLCI data and merged ocean colour (OC) products from CMEMS GlobColour archive. The 

main retrieved PFTs include diatoms, haptophytes, and prokaryotic phytoplankton 

(cyanobacteria). Previously investigated retrieval methods, empirical orthogonal functions (EOF) 

for pigment concentrations estimation (Bracher et al. 2015) and generalized OC inversion model 

for inherent optical properties (GIOP) (Werdell et al. 2013, 2014) for PFT discrimination, are 

tested and adapted potentially with full use of our current available in situ measurements from 

various campaigns worldwide, in which we have a number of collocated remote sensing 

reflectance spectra (Rrs) and PFT data based on HPLC pigments in addition to other bio-optical 

measurements. Algorithms are tested and compared by both taking hyperspectral and 

multispectral in situ Rrs spectra as input data, and the multispectral based approach is applied 

later on to the above-mentioned satellite products. Performances of both EOF- and GIOP-based 

approaches are assessed statistically and cross-validated, with results showing that both could 

well predict chlorophyll-a concentrations for diatoms and haptophytes but less accurate for 

prokaryotes. In a next step these algorithms are adapted to satellite OC data collocated to an even 

much larger in-situ PFT database derived from HPLC phytoplankton pigments. This is to 

eventually develop the global satellite PFT products for long-term observation, updated timely 

with more available OLCI data in the future, and intercompared to the results with other existing 

PFT products (e.g. PhytoDOAS, OC-PFT, SynSenPFT, PHYSAT).  

 

1. Background 

 

Over the past decades, satellite ocean colour remote sensing has been widely utilized as a method 

for estimating chlorophyll a concentration, which is often used as an indicator of phytoplankton 

biomass. Beyond that, extracting information on phytoplankton community structure (e.g., 

phytoplankton functional types (PFTs), size classes (PSCs) and composition) has become a 

research topic of priority, as they are playing an important role in understanding the marine food 

web and provide aids in the modelling associated with climate change impacts on biogeochemical 

and ecological cycling of oceans (IOCCG, 2014; Bracher et al., 2017; Correa-Ramirez et al., 

2018). Satellite OC data enables observation of PFTs over large areas or even at global scale. 

With the successful launch of Sentinel 3A in 2016 and 3B in 2018, both OLCI sensors are 

providing high quality OC data which allow us to continue developing methods and their 

application to satellite data for identifying and estimating PFTs with respect to global 

observation. There is a clear need to implement a sound PFT retrieval algorithm to the OLCI 

data, as well as to previous and current OC products, such as GlobColour merged OC data. 

 



In the present study, we investigate two algorithms for their capability in PFT retrievals, namely 

the adapted generalized IOP (AGIOP) and the EOF-based algorithm, with the use of extensive in 

situ measurements, matchups between in situ and satellite data, and satellite OC products. The 

retrieved PFTs (diatoms, haptophytes, prokaryotic phytoplankton (cyanobacteria)) based on in 

situ data sets are compared with the results of diagnostic pigment analysis (DPA) from HPLC 

measurements. The two algorithms are also preliminarily applied to the GlobColour merged OC 

products and OLCI data. 

2. Data and Method 

2.1. In situ datasets  

We have collected our current available in situ measurements from various campaigns covering 

different regions worldwide, including the Atlantic (ANT24-1 (7/2007), ANT24-4 (4-5/2008), 

ANT25-1 (11/2008), ANT26-4 ((4-5/2010) and a very recent one PS113 (5-6/2018); ~77 

profiles), North Atlantic MSM9-3 (summer 2008), Arctic (PS76 (summer 2010), ARK26-3 (8-

9/2011), PS93.2, PS99, and PS107 (summers 2015-2017), ~ 81 profiles, Pacific regions (SO218 

South China/Zulu Sea (11/2011), SO243 at East tropical Pacific (10/2015); 12 profiles), the 

Southern Ocean (ARK28-3 (1-3/2012); 17 profiles), and the North Sea (Heincke462 (4-5 2016), 

~19 profiles), in which we have a number of remote sensing reflectance spectra (Rrs) and PFT 

data based on HPLC pigments in addition to other bio-optical measurements (mainly the 

absorption spectra by the total particles, non-algal particles and phytoplankton). From this 

collection we have 212 Rrs profiles with 208 HPLC pigment and absorption measurements 

collocated data sets.  

A large database of the quality controlled near surface (first 12 m) HPLC phytoplankton 

pigments built for the SynSenPFT Project (SynSenPFT, 2017) is also used with the collocated Rrs 

spectra from GlobColour merged OC products for the EOF model training. The HPLC pigment 

database includes 15,176 sets of phytoplankton pigments spanning 15 years from 1988 to 2012 

covering the global ocean, collected from SEABASS, MAREDAT, LTER, BATS, AESOP-

CSIRO, LOV and also from own data at PANGAEA (see Table 1 in Losa et al., 2017).  

2.2. Satellite data and matchups 

The Rrs spectra at multispectral bands collocated with the HPLC pigments from the large 

database mentioned in Section 2.1 were extracted from the merged ocean color products 

(including SeaWiFS, MODIS, MERIS, VIIRS) from 1997 to 2012, with the help of ACRI-ST. 

This data set with collocated HPLC pigment data is used for the EOF model training for global 

PFT retrievals. The extracted Rrs matchups include single pixel, 3x3, and 5x5 pixels with the 

mean and the standard deviation for each matchup for the 3x3 and 5x5 cases. However, not 

always the same wavebands for Rrs data are available due to that different sensors with different 

spectral coverage have measured at different period (in addition also the exclusion of data with 

bad quality). Table 1 lists the numbers of matchups with different band combinations (from 5 

bands to 12 bands) for Rrs matchups with single pixel and 3x3 (5x5) pixels, respectively. 

Satellite products were also obtained from the GlobColour data archive 

(http://www.globcolour.info/). For the first application of AGIOP and EOF-based algorithms to 

OLCI and GlobColour merged products, scenes of S3A OLCI L3 8-day averaged global Rrs 

product in 2017, and monthly merged Rrs products in 2011 were acquired with resolutions at 25 

km and 100 km, respectively. 

http://www.globcolour.info/


2.3. Theoretical basis of retrieval algorithms for PFTs 

2.3.1. Adapted generalized ocean colour inversion model (AGIOP) 

GIOP was initially developed under the framework of relating Rrs to the inherent optical 

properties (IOPs). GIOP integrates all the existing semi-analytical algorithms (SAA) and allows 

for the construction of different SAAs at runtime by selecting different parameterizations. Figure 

2 gives the flowchart of the GIOP and the detailed description can be found in Werdell et al. 

(2013).  Further investigations by Werdell et al. (2014) and Wolanin et al. (2016) on the 

capability of GIOP in discriminating phytoplankton groups implied that it is potentially possible 

to quantify the biomass of phytoplankton types by characterizing the absorption by 

phytoplankton with consideration of different phytoplankton populations. It is assumed that the 

phytoplankton absorption component is a linear sum of subcomponents with unique spectral 

dependencies. Therefore, in the adapted GIOP (AGIOP) we decomposed the phytoplankton 

absorption into three PFTs, that are diatoms, haptophytes, and cyanobacteria. Specific absorption 

of the three PFTs used in the AGIOP were obtained from natural water samples where one of the 

three PFTs was dominating. Using Rrs at different wavebands and the spectral shapes of the 

inherent optical properties as eigenvectors as input, eigenvalues for absorption (which are the 

chlorophyll concentrations of PFTs for phytoplankton absorption and absorption of coloured 

detrital matter at 440nm) and particle backscattering at 440 (bbp(440)) can be derived via linear or 

nonlinear least squares inversions. Note that different inversion methods may lead to differences 

in the retrievals. 

2.3.2. Empirical Orthogonal Functions (EOF) based algorithm 

Empirical Orthogonal Function (EOF) analysis which is based on principal component analysis, 

has been previously used for assessing variance of structures in spectral Rrs or water leaving 

radiance data (e.g., Taylor et al. 2013, Craig et al. 2012, Lubac and Loisel 2007). The spectral 

data are subject to EOF analysis, in order to reduce the high dimensionality of the data and derive 

the dominant signals (“modes”) that best describe variance within the data set (Taylor et al. 

2013). In addition to dimension reduction of spectral data, the use of EOF modes in statistical 

model building also avoids problems associated with multicollinearity amongst the original 

predictor variables. In a recent study by Bracher et al. (2015) the reflectance data were used to 

derive the optical signature of different pigments by an automatic and generic technique. The 

EOF analysis is applied to Rrs data obtained in-situ and by satellite sensors in the Atlantic Ocean. 

The dominant EOF loadings were subsequently assessed as predictors in a multiple linear 

regression for the concentration of phytoplankton pigments. A permuted cross-validation routine 

was then performed to evaluate the prediction error of each model, to estimate the critical sample 

sizes necessary for reliable prediction.  

Given that EOFs derived from both hyperspectral underwater radiometric measurements and 

multispectral reflectance data from field or satellite (MERIS Polymer) enable reliable predictions 

of the concentration of nine different pigments/pigment groups (Bracher et al. 2015), it is 

worthwhile to investigate the capability of EOF analysis on reflectance data in predicting the 

concentrations of PFTs. A recent study by Correa-ramirez et al. (2018) showed that the EOF 

method could improve the remote sensing identification of PFTs (only in their dominance but not 

quantitatively), which suggests the possibility of the EOF in retrieving the PFT Chl-a 

concentrations. Following the steps used in model building and predictions in Bracher et al 

(2015), we applied the EOF analysis to collocated Rrs data from GlobColour merged products 

with in situ HPLC (globally) from 1997–2012. With the use of the collocated in situ pigment data 



we established the prediction functions between the EOF modes and the HPLC based PFTs, 

which will be further implemented to the satellite images (merged OC products and OLCI) to 

enable the global retrieval of PFTs. 

3. Results 

3.1. AGIOP with three PFTs included 

The in situ data sets of Rrs was used as input for the AGIOP with three PFTs included (as 

described in section 2.3.1). Based on the improved diagnostic pigment analysis (DPA) (Soppa et 

al., 2014, 2017; Losa et al., 2017), the in situ HPLC pigments were used to estimate the 

chlorophyll concentrations of the three PFTs, which were taken as observations and compared 

with the retrievals from the AGIOP to validate the performance of the algorithm.  

Both nonlinear least square (NLSQ) inversion and non-negative linear matrix inversion 

(NonnegLMI) were used in the AGIOP, in order to have a comparison between the two inversion 

methods. Besides, the following aspects were also considered: 

1. Hyperspectral Rrs data set with different band ranges (400 – 700 nm, 450 – 650 nm, 400 – 

650 nm, and 400 – 600 nm) as input 

2. Excluding or including data points in optically complex case 2 waters (points of case 1 

and case 2 waters were separated using the criteria proposed by Lee & Hu (2006)) 

3. In situ Rrs spectra with reduced spectral resolution (specially at OLCI bands according to 

the OLCI spectral response functions (SRF)) 

Tests on band ranges showed that there were only slight differences when using Rrs data set at 

different band ranges. However, the range 400 – 600 nm outperformed the others. Excluding the 

points in case 2 waters improved even more the statistical results comparing the AGIOP retrieved 

the PFTs and the PFTs from the in-situ data set (results not shown). The retrievals from AGIOP 

using multispectral Rrs with OLCI bands were not deteriorated significantly and were still 

comparable to the results from hyperspectral Rrs. As an example, Figure 1 shows the comparison 

between the AGIOP retrieved concentrations of total Chl-a and the three PFTs and the HPLC 

pigment based PFTs. Statistical results for some important cases were listed in Table 2. Overall, 

the AGIOP performs the best for the total Chl-a, fairly for diatoms and haptophytes, but the worst 

for cyanobacteria due to the relatively low concentrations. All the retrieved concentrations were 

generally overestimated compared to the HPLC based PFTs.   

3.2. EOF-based Algorithm 

According to the band combinations of the Rrs from the merged OC products listed in Table 1, we 

chose the ones marked as blue (8 bands, 9 bands and 11 bands) with corresponding in situ 

pigments as input for EOF model building. The total chlorophyll concentration and the three 

PFTs were predicted based on the leading EOF modes and linear relationship established by the 

multilinear regression. Rrs at single pixel, 3x3 pixels, and averaged Rrs at 3x3 pixels were all 

taken as input for comparison between the results from different band numbers, pixels and data 

points. Statistics showed that EOF predicted PFTs displayed slight differences though there were 

various settings of the input Rrs data sets regarding the band number and matchup pixels. Among 

all the settings, Rrs at 9 bands with 1x1 pixel performed the best, slightly better than the Rrs at the 

same 9 bands with 3x3 pixels (all pixels taken into account). Figure 2 shows the regression 

between the predicted and observed PFTs for the mentioned two Rrs data sets. With respect to the 



PFTs retrievals, diatoms and haptophytes showed comparable and relatively good predictions but 

prokaryotes (cyanobacteria) were of the lowest quality. This is mainly due to the low 

concentrations and the narrow range of the variation compared to other PFTs, leading poor 

accuracy in the prediction model. 

3.3. First PFT results of AGIOP and EOF algorithms applied to OLCI and merged OC 

data 

3.3.1 AGIOP applied to OLCI products 

We chose 8-day averaged global Rrs product in January, April, June and October 2017 as the first 

examples to test the GIOP model for PFT retrievals. For the first test and run only the ones with 

25 km (8 hours runtime on PC) and 100 km (30 minutes on PC) were used. Only case-1 waters 

were chosen based on the criteria by Lee and Hu (2006), and all others (case 2 waters, area with 

unavailable Rrs, etc.) were flagged. The NLSQ and Nonneg-LMI inversion methods in the 

AGIOP model with 3 PFTs included were both tested. Disappointingly, the NLSQ showed totally 

unreasonable distribution of the 3 PFTs, with diatom extremely high, negative retrievals for 

haptophytes, and overestimated cyanobacteria. The main reason causing this might be the 

inappropriate use of nonlinear minimization method in which proper constraints and bounds 

could not be applied for the retrieved parameters. Nevertheless, the Nonneg-LMI inversion 

worked fairly well even though a large amount of the pixels were failed to be retrieved for diatom 

and haptophytes (Figure 3), as most of the retrievals for the two PFTs reached the Nonneg-LMI 

lower bound ‘0’. From the distribution it was found that retrieval failures often occurred in 

oligotrophic regions where the overall phytoplankton biomass was very low, indicating that the 

algorithm is not efficient in working with small values, and corresponding adjustment and more 

tests in minimization methods in the AGIOP are still required. 

In conclusion, while the whole procedure of AGIOP applied to OLCI data is working further 

investigations on the model settings need to be carried out. The factors influencing the most are: 

types and numbers of the PFTs involved in the model, selection of the PFT absorption spectra 

and their corresponding weightings (e.g., introducing wavelength dependent uncertainties in Rrs 

and aph_PFT). All these factors limit the AGIOP model which was developed in the first place on 

exploitation of the in situ measurements.  

3.3.2. EOF based algorithm applied to GlobColour merged OC products 

As Sentinel 3A and 3B were recently launched and matchups between OLCI Rrs and in situ 

measurements have not been fully analysed or collected yet, only the matchups between the 

satellite Rrs from merged sensors and in situ HPLC pigment data from 1997 to 2012 were 

available for the EOF training, which therefore only allows the application of the trained EOF 

modes to the merged OC products in the period of 1997 – 2012. Given that the EOF modes 

trained by the Rrs at 9 bands works the best for PFT prediction compared to other band 

combinations (band information in Table 1), we applied the EOF modes based on the matchups 

with 9 Rrs bands to the merged OC Rrs product at the same bands in the year of 2011. Figure 4 

shows the global retrievals of the 3 PFTs in different seasons. Both diatom and haptophytes 

displayed similar distribution patterns with the results from AGIOP but with much more valid 

retrievals leading to a better coverage, despite that the magnitudes of the EOF retrieved 

concentrations were generally lower than that of the AGIOP. Cyanobacteria retrieved by the two 

algorithms showed apposed patterns in most of the oceans except for the waters above 40°N in 

some seasons. Regarding cyanobacteria, it is already known from section 3.2 the EOF training 



using satellite matchups, that the prediction for cyanobacteria was the worst (low R2) among all 

the PFTs and predicted concentrations were flattened showing overestimation in smaller values 

and underestimation in higher values (Figure 2). So far, an accurate cyanobacteria or its marker 

pigment retrieval has always been a challenge (e.g., Bracher et al., 2015; Losa et al., 2017). 

Validation of the PFT product are yet to be carried out and the algorithm itself needs to be further 

improved by considering more mathematical inputs in the EOF transformation such as using 

nonlinear multi-regression for PFT prediction or scaling the data sets to improve the retrievals for 

smaller values. 

4. Conclusions and outlook 

Two algorithms, AGIOP and EOF based PFT retrieval algorithm, were both investigated and 

tested with different settings and scenarios, and the retrievals were compared with the PFTs 

derived using the improved DPA algorithm. Both algorithms can well retrieve diatoms and 

haptophytes but perform less good for cyanobacteria mainly due to their general low 

concentration resulting weak signal in the reflectance spectra. 

Nevertheless, regarding the algorithm development, the following aspects are still worth to be 

further investigated for AGIOP: 

• Specific absorption spectra of PFTs used in the model, parametrizations accounting for 

the package effect, and spectral regions of no correlation of the absorption spectra by 

different PFTs. 

• Uncertainties introduced into the Rrs data set with consideration of specific bands, 

information obtained from measurements and knowledge of PFT contained in each band. 

• As GIOP assumes the absorption by phytoplankton is a linear sum of different 

phytoplankton components, it is crucial to determine the number of PFTs that are to be 

included. 

• Other minimization methods. 

With respect to the EOF based PFT algorithm, it performed better than the AGIOP for both, the 

in situ datasets and the merged OC products. However, the EOF modes applied to the satellite 

OC images for the global retrieval showed that concentration of cyanobacteria was still 

overestimated especially for oligotrophic waters. Due to the current lack of a large enough 

number of matchups between the OLCI Rrs and in situ pigments, the EOF training for OLCI data 

so far cannot be carried out. With our recent PS113 trans-Atlantic cruise (see Bracher et al., this 

conference) and previous PS cruises in Fram Strait since 2016 (see Liu et al., this conference), it 

is possible to extract matchups of OLCI for the EOF application to S3 OLCI data. Overall, the 

following aspects are worth to be considered or tested: 

• Collect and use matchups between the OLCI Rrs and in situ pigment data to establish the 

EOF modes and prediction functions for OLCI bands, and apply the EOF modes to S3A/B 

OLCI products, and compare the results with the results from AGIOP–OLCI retrieved 

PFTs.  

• Separate two cyanobacteria groups: EOF to DVChla (directly retrieved Prochlorococcus) 

and PE-data (marker for phycoerythrine containing cyanobacteria, Taylor et al. 2013). 

• Try EOF models with different principle components included, this might reduce the 

flattening of the regression between the predicted and observed data. 
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Table 1. Numbers of available matchups between in situ HPLC pigment and GlobColour merged 

Rrs (1x1 pixel, in total 1,607 spectra; 3x3 pixels, in total 2,063 spectra; 5x5 pixels, in total 2360 

spectra) with different band combinations from the merged ocean colour products. Blue 

highlights the matchups used in the EOF based algorithm (SeaW = SeaWiFS, MO = MODIS, ME 

= MERIS, V = VIIRS). 
 

Sensors 

Number of 

Matchups 

Available Wavebands (nm) Number 

of bands 

1x1 3x3

5x5 

412 443 490 510 531 547 551 555 560 620 670 678 

SeaW 1223 609 X X X X    X   X  6 

SeaW+MO+ME 408 266 X X  X  X  X  X   X    X X 9 

SeaW+ME 502 129 X  X  X  X    X  X  X  X   8 

SeaW+MO+ME 212 64 X X X X X X  X X X X X 11 

MO+ME+V 3 2 X X X X X X X X X X X X 12 

SeaW+MO+ME 766 516 X X X  X X  X   X X 8 

MO+V 25 27 X X X  X X X X   X X 9 

SeaW 1596 880 X X X     X   X  5 

 
 
 

Table 2: Statistical results of comparison between three PFTs included AGIOP retrieved PFTs 

(with different methods, band ranges and water types considered) and HPLC-based PFTs. Blue 

highlights the best statistical result. R = Spearmann correlation coefficient, ME = Mean Relative 

Error, RMSE = Root-Mean-Squar Error. 
Minimization  

Method 

Band range First 

guess 

Water 

type 

Retrieved parameter R 

(Spearman) 

R2 ME RMSE 

NLSQ 400-600 
OC4 

Chl-a 
All 

Total Chl-a 0.71 0.26     55.2     1.31     

Diatoms 0.43 0.08 349.7 2.12 

Haptophytes  0.56 0.46 82.5 0.34 

Cyanobacteria 0.42 0.08 272.5 0.27 

NLSQ 400-600 
OC4 

Chl-a 
Case 1 

Total Chl-a 0.78  0.48  51.1  0.97     

Diatoms 0.60     0.29     211.0  1.23     

Haptophytes  0.69     0.46     59.1  0.36     

Cyanobacteria 0.42     0.17     209.6     0.21 

NLSQ 
OLCI  

10 bands 

OC4 

Chl-a 
Case 1 

Total Chl-a 0.80  0.50  77.1  1.15     

Diatoms 0.47     0.43    510.1     1.25     

Haptophytes  0.62    0.42     54.5     0.45     

Cyanobacteria -0.08 0.00    615.6     1.03 

NonnegLMI 
OLCI  

10 bands 

OC4 

Chl-a 
Case 1 

Total Chl-a 0.76     0.45   37.1  0.77   

Diatoms 0.82     0.57 127 0.38   

Haptophytes  0.78    0.50 235     0.43 

Cyanobacteria 0.12 0.00 248 1.34 

 

 

 

 

 

 

 



 
Figure 1: Scatterplots of the AGIOP retrieved (a) total Chl-a, (b) diatoms, (c) Haptophytes, and 

(d) Cyanobacteria versus HPLC-based Chl-a and PFTs. Here the GIOP was conducted with 

NLSQ, Rrs ranging in 400 – 600 nm and only points in case 1 waters were included (statistics 

marked blue in Table 2). 
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Figure 2: Regressions between observed (obs.) PFTs (based on DPA) and predicted 

concentrations (pred.) based on EOF modes derived from Rrs at 9 wavebands from GlobColour 

merged products. Top panel: Rrs 1x1 pixel at 9 bands, bottom panel: Rrs 3x3 pixels at 9 bands. 

 



 
Figure 3: Global PFTs retrieved by AGIOP applied to monthly OLCI Rrs data (GlobColour level 

3 product) in January, April, June and October 2017. Left panel: diatom, middle panel: 

hyptophytes, right panel: cyanobacteria. 

 
 



 
Figure 4: Global PFTs retrieved by EOF-based algorithm (9 bands) applied to GlobColour 

merged monthly Rrs products in January, April, June and October 2011. Left panel: diatom, 

middle panel: hyptophytes, right panel: cyanobacteria. 

 


	2. Data and Method
	2.1. In situ datasets
	2.2. Satellite data and matchups
	2.3. Theoretical basis of retrieval algorithms for PFTs
	2.3.1. Adapted generalized ocean colour inversion model (AGIOP)
	2.3.2. Empirical Orthogonal Functions (EOF) based algorithm

	3. Results
	3.1. AGIOP with three PFTs included
	3.2. EOF-based Algorithm
	3.3. First PFT results of AGIOP and EOF algorithms applied to OLCI and merged OC data

	4. Conclusions and outlook
	Acknowledgements
	References

